

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

LABORATORY REPORT

September 18, 2014

Andy Limmer Weaver Boos Consultants 1604 Eastport Plaza Drive, Suite 104 Collinsville, IL 62234

RE: Cottonwood Hills RDF Flare Gas Sample

Dear Andy:

Enclosed are the results of the samples submitted to our laboratory on September 4, 2014. For your reference, these analyses have been assigned our service request number P1403572.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

By Sue Anderson at 2:35 pm, Sep 18, 2014

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Boos Consultants

Project: Cottonwood Hills RDF Flare Gas Sample

Service Request No: P1403572

CASE NARRATIVE

The samples were received intact under chain of custody on September 4, 2014 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

BTU and CHONS Analysis

The results for BTU and CHONS were generated according to ASTM D 3588-98. The following analyses were performed and used to calculate the BTU and CHONS results. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

C2 through C6 Hydrocarbon Analysis

The samples were analyzed according to modified EPA Method TO-3 for C2 through >C6 hydrocarbons using a gas chromatograph equipped with a flame ionization detector (FID). This method is not included on the laboratory's NELAP or AIHA-LAP scope of accreditation.

Fixed Gases Analysis

The samples were also analyzed for fixed gases (hydrogen, oxygen/argon, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This method is not included on the laboratory's NELAP or AIHA-LAP scope of accreditation.

Hydrogen Sulfide Analysis

The samples were also analyzed for hydrogen sulfide per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

Sulfur Analysis

The samples were also analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Weaver Boos Consultants

Project: Cottonwood Hills RDF Flare Gas Sample

Service Request No: P1403572

CASE NARRATIVE

Total Gaseous Non-Methane Organics as Methane Analysis

The samples were also analyzed for total gaseous non-methane organics as methane according to modified EPA Method 25C. The analyses included a single sample injection (method modification) analyzed by gas chromatography using flame ionization detection/total combustion analysis. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161

F: +1 805 526 7270 www.alsglobal.com

ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L14-2
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	643428
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 14-5
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 4-4
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Weaver Boos Consultants Service Request: P1403572

Project ID: Cottonwood Hills RDF Flare Gas Sample

Date Received: 9/4/2014 Time Received: 07:44

Client Sample ID	Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	PfI (psig)	ТО-3 Мос	3C Modifi	ASTM D	ASTM D 5	25C Modifie	
CWH-1	P1403572-001	Air	9/3/2014	12:53	SSC00258	-2.36	3.73	X	X	X	X	X	
CWH-2	P1403572-002	Air	9/3/2014	13:17	SSC00223	-1.95	3.67	X	X	X	X	X	
CWH-3	P1403572-003	Air	9/3/2014	13:34	SSC00072	-2.53	3.59	\mathbf{X}	\mathbf{X}	X	X	X	

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Page ____ of___

ALS	Phone (805) 526			Requested Turnaro 1 Day (100%) 2 Day (und Time in Busines (75%) 3 Day (50%) 4			tandard		ALS Project I	or fall on	
Company Name & Address (Reporting Info Weaver Boos Con 1604 Eastport Plaza Collinsville, Illa	rmation)		y de	Project Number	d Hills RDF		as Sampl	9		sis Method		
Project Manager Andy Limmer			,	P.O. # / Billing Inform	286 - 440 - 1	0-03		e e e e e e e e e e e e e e e e e e e	10-15 Cmpds 0.100/3+716 +30.crduced Surfurs)			
Phone (618) 830-1317	Fax								-15 G.10		Comments e.g. Actual	
Email Address for Result Reporting a limmer @weaver bo	os com			Sampler (Print & Sign)		Q Spare					Preservative or specific	
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # - FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume (L)	EPA C75		instructions	
CWH-I		9/3/14	1253	55000258	50A00224	ggethe	especial designation of the second se	6.0	×	-2.27		
CWH-2	-	9/3/14	1317	58C00283	SOA00144	- Andrews	Name of the last o	6.0	×	-1.88		
CWH-3		9/3/14	1334	SSC0072	SOAC0015	(C. Rendands	**************************************	6.0	×	-2.73	·	
3												
									4			
						·						
-							*			V	large of	
•									*			
-							(₄)					
							, <u>, , , , , , , , , , , , , , , , , , </u>					
		,ie.				· · ·						
			·									
Rep Tier I - Results (Default in not specified) Tier II (Results + QC Summaries		 please selec QC & Calibration Package 	on Summaries) _	3	EDD required YES Type:	/ No Units:			Custody Seal: (BROKEN	Strole) BSENT	Project Requirements (MRLs, QAPP)	
Relinquished by: (Signature)	t	****	Date; 9/3/14	Time: /630	Received by: (Signatur	re) V.	Ju	-	9th IN	Timper) V V	And the second s	
Relinquished by: (Signature)			Date:	Time:	Received by: (Signatur	e)	. 2 ~		Date:	Time:	Cooler / Blank	

WEAVER BOOS CONSULTANTS LANDFILL GAS FLARE TESTING LOG

Waste Management, Inc.
Cottonwood Hills Recycling and Disposal Facility
Marissa, IL

Sampler	Frank Bartho	- Constitution of the Cons	
Date Sample I.D. Vessel I.D. Vessel Vol.	9/3/14 CWH-1 SSCO0258 GO	Flow Controler ID	<u>SO AQQO Q</u>
Temperature Me	Flare Temp.*	1494	Deg. F
	Gas Temp.** *Recorded From FI ** Measured with in	are Chart Recorder	Deg. F
Pressure Measu	rement Static Pressure* * Measured with in-		Inches H20
Flow Rate Reco	rd		
	Time Flow Rate* *Recorded from cor	1255 1075 ntinuous flowmeter	SCFM
Summa Canister	r Vacuum Readings Initial Vacuum Final Vacuum	уулганда Раймай түүлт	Inches Hg
	Start Time End Time	1253 1308	

WEAVER BOOS CONSULTANTS LANDFILL GAS FLARE TESTING LOG

Waste Management, Inc.
Cottonwood Hills Recycling and Disposal Facility
Marissa, IL

Sampler	Frank Barth	<u>o</u> j	
Date Sample I.D. Vessel I.D. Vessel Vol.	9/3/14 CWH-2 35C00223 6.0	Flow Controler ID	SOAOOI44
Temperature Me	easurements Flare Temp.* Gas Temp.**	1425	_Deg. F Deg. F
	•	lare Chart Recorder	_ Dog. 1
Pressure Measu	urement Static Pressure* * Measured with in		Inches H20
Flow Rate Reco	rd		
	Time Flow Rate* *Recorded from co		SCFM
Summa Caniste	r Vacuum Readings Initial Vacuum Final Vacuum	apaton,	Inches Hg Inches Hg
	Start Time End Time	1317 1332	-

WEAVER BOOS CONSULTANTS LANDFILL GAS FLARE TESTING LOG

Waste Management, Inc.
Cottonwood Hills Recycling and Disposal Facility
Marissa, IL

Sampler	Frank Bart	hal	
Date Sample I.D. Vessel I.D. Vessel Vol.	9/3/14 CWH-3 SSC0072	Flow Controler ID liter	30ACC015
Temperature Me	easurements Flare Temp.* Gas Temp.** *Recorded From Fla	1457 129 are Chart Recorder	Deg. F Deg. F
Pressure Measu	** Measured with in		
Tressure Measu	Static Pressure* * Measured with in-	line Gauge	Inches H20
Flow Rate Reco	rd		
	Time Flow Rate* *Recorded from cor	1336 1067 ntinuous flowmeter	SCFM
Summa Canister	r Vacuum Readings Initial Vacuum Final Vacuum	**************************************	Inches Hg
	Start Time End Time	1334 1249	

ALS Environmental Sample Acceptance Check Form

Client:	Weaver Boos	Consultants				Work order:	P1403572			
Project:	Cottonwood F	Hills RDF Flare Gas Sa	mple / 0086-4	40-10-03	·					
Sample(s) received on:	9/4/14)	Date opened:	9/4/14	by:	KKEL	PE	
Vote: This	form is used for all	1 samples received by ALS.	The use of this fe	orm for custody se	eals is strictly me	eant to indicate pres	ence/absence and r	not as an ir	dication	of
ompliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at	the request of the	e client and/or as red	quired by the meth		Nia	NI/A
				1.70	2			Yes	No	<u>N/A</u>
1	_	containers properly n	narked with cli	ent sample ID	?			×	П	
2	Container(s) s	upplied by ALS?						X		
3		ontainers arrive in goo						X	П	
4		f-custody papers used						×		
5	_	ontainer labels and/or			ers?			X	Д	
6	Was sample v	olume received adequ	ate for analys:	is?				X		
7	Are samples w	vithin specified holdin	g times?					×		
8	Was proper te	emperature (thermal p	reservation) o	f cooler at rece	eipt adhered t	o?				X
9	Was a trip bla	ank received?							X	
10	Were custody	seals on outside of co	oler/Box?						X	
		Location of seal(s)?					Sealing Lid?			×
	Were signatur	e and date included?					_			\times
	Were seals int									X
			nole container	?					X	
	Were custody seals on outside of sample container? Location of seal(s)? Sealing Lid?							_		×
										$\overline{\mathbf{x}}$
	Were signature and date included?									\boxtimes
11	Were seals intact?									X
11	** * *									\boxtimes
	Is there a client indication that the submitted samples are pH preserved? Were VOA vials checked for presence/absence of air bubbles?									
										\boxtimes
		t/method/SOP require			mple pH and	if necessary alte	er it?			\boxtimes
12	Tubes:	Are the tubes capp	ed and intact?							X
		Do they contain n	ioisture?							×
13	Badges:	Are the badges pr	operly capped	and intact?						\times
		Are dual bed badş	ges separated a	nd individuall	y capped and	intact?				X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	Pagai	ipt / Pres	orvation	
Lau	Sample 1D	Description	pH *	рН	pH	(Presence/Absence		Commen		
P1403572	0.001.01	6.0 L Silonite Can	ly.	P	ly.	(Tresence Tresence				
P1403572		6.0 L Silonite Can					+			
P1403572		6.0 L Silonite Can								
	* 30 section to the rest	ger yande, ne 't oper open den generalerer en een opdereen.								
Explair	any discrepanc	ies: (include lab sample)	(D numbers):							
			,							

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS Page 1 of 1

Client: **Weaver Boos Consultants**

Client Sample ID: CWH-1 ALS Project ID: P1403572 Client Project ID: Cottonwood Hills RDF Flare Gas Sample ALS Sample ID: P1403572-001

ASTM D3588-98 Test Code:

Date Collected: 9/3/14 Analyst: Mike Conejo/Nalini Lall Sample Type: 6.0 L Silonite Canister Date Received: 9/4/14

Test Notes:

Container ID: SSC00258

		Canister Dilution Factor: 3.05			
Components	Result	Result	Data		
	Volume %	Weight %	Qualifier		
Hydrogen	0.64	0.05			
Oxygen + Argon	2.65	3.06			
Nitrogen	13.22	13.40			
Carbon Monoxide	< 0.01	< 0.01			
Methane	48.90	28.37			
Carbon Dioxide	34.52	54.95			
Hydrogen Sulfide	0.02	0.03			
C2 as Ethane	< 0.01	< 0.01			
C3 as Propane	< 0.01	< 0.01			
C4 as n-Butane	< 0.01	< 0.01			
C5 as n-Pentane	< 0.01	0.02			
C6 as n-Hexane	< 0.01	0.02			
> C6 as n-Hexane	0.02	0.07			
TOTALS	99.99	99.99			
Components	Mole %	Weight %			
Carbon	21.89	36.33			
Hydrogen	51.72	7.20			
Oxygen + Argon	19.46	43.04			
Nitrogen	6.93	13.41			
Sulfur	< 0.10	< 0.10			
Specific Gravity (Air = 1)		0.9544			
Specific Volume	ft3/lb	13.73			
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	499.3			
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	449.5			
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	489.3			
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	440.5			
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	6,854.8			

Net Heating Value (Dry Gas @ 60 F, 14.696 psia)

Compressibility Factor "Z" (60 F, 14.696 psia)

6,171.2

0.9974

BTU/lb

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-2ALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P1403572-002

Test Code: ASTM D3588-98

Analyst: Mike Conejo/Nalini Lall Date Collected: 9/3/14 Sample Type: 6.0 L Silonite Canister Date Received: 9/4/14

Test Notes:

Container ID: SSC00223

		Canister Dilution Factor: 2.8		
Components	Result	Result	Data	
	Volume %	Weight %	Qualifier	
Hydrogen	0.67	0.05		
Oxygen + Argon	2.09	2.42		
Nitrogen	11.37	11.52		
Carbon Monoxide	< 0.01	< 0.01		
Methane	50.14	29.08		
Carbon Dioxide	35.62	56.68		
Hydrogen Sulfide	0.03	0.04		
C2 as Ethane	< 0.01	< 0.01		
C3 as Propane	< 0.01	< 0.01		
C4 as n-Butane	< 0.01	< 0.01		
C5 as n-Pentane	< 0.01	0.02		
C6 as n-Hexane	< 0.01	0.02		
> C6 as n-Hexane	0.03	0.13		
TOTALS	99.99	99.99		

Components	Mole %	Weight %	
Carbon	22.23	37.39	
Hydrogen	52.40	7.40	
Oxygen + Argon	19.49	43.65	
Nitrogen	5.88	11.52	
Sulfur	< 0.10	< 0.10	

Specific Gravity (Air = 1)		0.9548	
Specific Volume	ft3/lb	13.72	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	513.2	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	462.0	
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	502.8	
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	452.7	
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	7,041.7	
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	6,339.8	
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9973	

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-3ALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P1403572-003

Test Code: ASTM D3588-98

Analyst: Mike Conejo/Nalini Lall Date Collected: 9/3/14 Sample Type: 6.0 L Silonite Canister Date Received: 9/4/14

Test Notes:

Container ID: SSC00072

		Canister Dilution	Factor: 3.12	
Components	Result	Result	Data	
•	Volume %	Weight %	Qualifier	
Hydrogen	0.65	0.05		
Oxygen + Argon	2.24	2.59		
Nitrogen	11.88	12.03		
Carbon Monoxide	< 0.01	< 0.01		
Methane	49.74	28.83		
Carbon Dioxide	35.40	56.29		
Hydrogen Sulfide	0.01	0.01		
C2 as Ethane	< 0.01	< 0.01		
C3 as Propane	< 0.01	< 0.01		
C4 as n-Butane	< 0.01	< 0.01		
C5 as n-Pentane	< 0.01	0.02		
C6 as n-Hexane	< 0.01	0.02		
> C6 as n-Hexane	0.03	0.14		
TOTALS	99.99	99.99		
Components	Mole %	Weight %		
Carbon	22.15	37.09		
Hydrogen	52.16	7.33		
Oxygen + Argon	19.52	43.54		
Nitrogen	6.16	12.03		
Sulfur	< 0.10	< 0.10		
Specific Gravity (Air = 1)		0.9556		
Specific Volume	ft3/lb	13.71		
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	508.9		
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/ft3	458.2		
Gross Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	498.7		
Net Heating Value (Water Saturated at 0.25636 psia)	BTU/ft3	449.0		
Gross Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	6,977.6		
Net Heating Value (Dry Gas @ 60 F, 14.696 psia)	BTU/lb	6,282.1		
Compressibility Factor "Z" (60 F, 14.696 psia)		0.9973		

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-1ALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P1403572-001

Test Code: EPA Method 3C Modified Date Collected: 9/3/14
Instrument ID: HP5890 II/GC1/TCD Date Received: 9/4/14
Analyst: Nalini Lall Date Analyzed: 9/8/14

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Container ID: SSC00258

Canister Dilution Factor: 3.05

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.644	0.31	
7782-44-7	Oxygen +			
7440-37-1	Argon	2.65	0.31	
7727-37-9	Nitrogen	13.2	0.31	
630-08-0	Carbon Monoxide	ND	0.31	
74-82-8	Methane	48.9	0.31	
124-38-9	Carbon Dioxide	34.5	0.31	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-2ALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P1403572-002

Test Code: EPA Method 3C Modified Date Collected: 9/3/14
Instrument ID: HP5890 II/GC1/TCD Date Received: 9/4/14
Analyst: Nalini Lall Date Analyzed: 9/8/14

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Container ID: SSC00223

Canister Dilution Factor: 2.85

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.674	0.29	_
7782-44-7	Oxygen +			
7440-37-1	Argon	2.09	0.29	
7727-37-9	Nitrogen	11.4	0.29	
630-08-0	Carbon Monoxide	ND	0.29	
74-82-8	Methane	50.2	0.29	
124-38-9	Carbon Dioxide	35.7	0.29	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-3ALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P1403572-003

Test Code: EPA Method 3C Modified Date Collected: 9/3/14
Instrument ID: HP5890 II/GC1/TCD Date Received: 9/4/14
Analyst: Nalini Lall Date Analyzed: 9/8/14

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

Test Notes:

Container ID: SSC00072

Canister Dilution Factor: 3.12

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.655	0.31	_
7782-44-7	Oxygen +			
7440-37-1	Argon	2.24	0.31	
7727-37-9	Nitrogen	11.9	0.31	
630-08-0	Carbon Monoxide	ND	0.31	
74-82-8	Methane	49.8	0.31	
124-38-9	Carbon Dioxide	35.4	0.31	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:Method BlankALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P140908-MB

Test Code: EPA Method 3C Modified Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Nalini Lall Date Analyzed: 9/08/14

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	
7782-44-7	Oxygen +			
7440-37-1	Argon	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
74-82-8	Methane	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE SUMMARY $\mbox{Page 1 of 1}$

Client: Weaver Boos Consultants

Client Sample ID:Lab Control SampleALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P140908-LCS

Test Code: EPA Method 3C Modified Date Collected: NA
Instrument ID: HP5890 II/GC1/TCD Date Received: NA
Analyst: Nalini Lall Date Analyzed: 9/08/14

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	ppmV		Limits	Qualifier
1333-74-0	Hydrogen	40,000	38,600	97	84-110	
7782-44-7	Oxygen +					
7440-37-1	Argon	50,000	49,900	100	88-114	
7727-37-9	Nitrogen	50,000	50,900	102	88-114	
630-08-0	Carbon Monoxide	50,000	50,300	101	88-113	
74-82-8	Methane	40,000	39,400	99	87-110	
124-38-9	Carbon Dioxide	50,000	49,800	100	84-109	

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-1ALS Project ID:P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID:P1403572-001

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Container ID: SSC00258

Date Collected: 9/3/14 Time Collected: 12:53 Date Received: 9/4/14 Date Analyzed: 9/5/14 Time Analyzed: 10:28

Volume(s) Analyzed: 0.10 ml(s)

Canister Dilution Factor: 3.05

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	290,000	210	210,000	150	
463-58-1	Carbonyl Sulfide	2,100	370	850	150	
74-93-1	Methyl Mercaptan	7,700	300	3,900	150	
75-08-1	Ethyl Mercaptan	ND	390	ND	150	
75-18-3	Dimethyl Sulfide	14,000	390	5,700	150	
75-15-0	Carbon Disulfide	1,300	240	420	76	
75-33-2	Isopropyl Mercaptan	5,900	470	1,900	150	
75-66-1	tert-Butyl Mercaptan	ND	560	ND	150	
107-03-9	n-Propyl Mercaptan	ND	470	ND	150	
624-89-5	Ethyl Methyl Sulfide	ND	470	ND	150	
110-02-1	Thiophene	3,700	520	1,100	150	
513-44-0	Isobutyl Mercaptan	ND	560	ND	150	
352-93-2	Diethyl Sulfide	ND	560	ND	150	
109-79-5	n-Butyl Mercaptan	ND	560	ND	150	
624-92-0	Dimethyl Disulfide	ND	290	ND	76	
616-44-4	3-Methylthiophene	ND	610	ND	150	
110-01-0	Tetrahydrothiophene	ND	550	ND	150	
638-02-8	2,5-Dimethylthiophene	ND	700	ND	150	
872-55-9	2-Ethylthiophene	ND	700	ND	150	
110-81-6	Diethyl Disulfide	ND	380	ND	76	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-2ALS Project ID:P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID:P1403572-002

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Container ID: SSC00223

Date Collected: 9/3/14
Time Collected: 13:17
Date Received: 9/4/14
Date Analyzed: 9/5/14

Time Analyzed: 10:43

Volume(s) Analyzed: 0.10 ml(s)

Canister Dilution Factor: 2.85

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	470,000	200	340,000	140	
463-58-1	Carbonyl Sulfide	2,400	350	970	140	
74-93-1	Methyl Mercaptan	12,000	280	6,100	140	
75-08-1	Ethyl Mercaptan	ND	360	ND	140	
75-18-3	Dimethyl Sulfide	18,000	360	7,000	140	
75-15-0	Carbon Disulfide	1,700	220	550	71	
75-33-2	Isopropyl Mercaptan	8,600	440	2,700	140	
75-66-1	tert-Butyl Mercaptan	1,400	530	390	140	
107-03-9	n-Propyl Mercaptan	ND	440	ND	140	
624-89-5	Ethyl Methyl Sulfide	ND	440	ND	140	
110-02-1	Thiophene	6,300	490	1,800	140	
513-44-0	Isobutyl Mercaptan	ND	530	ND	140	
352-93-2	Diethyl Sulfide	ND	530	ND	140	
109-79-5	n-Butyl Mercaptan	ND	530	ND	140	
624-92-0	Dimethyl Disulfide	ND	270	ND	71	
616-44-4	3-Methylthiophene	ND	570	ND	140	
110-01-0	Tetrahydrothiophene	ND	510	ND	140	
638-02-8	2,5-Dimethylthiophene	ND	650	ND	140	
872-55-9	2-Ethylthiophene	ND	650	ND	140	
110-81-6	Diethyl Disulfide	ND	360	ND	71	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:CWH-3ALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P1403572-003

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Container ID: SSC00072

Date Collected: 9/3/14 Time Collected: 13:34 Date Received: 9/4/14 Date Analyzed: 9/5/14 Time Analyzed: 11:03

Volume(s) Analyzed: 0.10 ml(s)

Canister Dilution Factor: 3.12

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	150,000	220	110,000	160	
463-58-1	Carbonyl Sulfide	2,000	380	820	160	
74-93-1	Methyl Mercaptan	5,800	310	2,900	160	
75-08-1	Ethyl Mercaptan	ND	400	ND	160	
75-18-3	Dimethyl Sulfide	13,000	400	5,000	160	
75-15-0	Carbon Disulfide	1,200	240	390	78	
75-33-2	Isopropyl Mercaptan	4,900	490	1,600	160	
75-66-1	tert-Butyl Mercaptan	ND	580	ND	160	
107-03-9	n-Propyl Mercaptan	ND	490	ND	160	
624-89-5	Ethyl Methyl Sulfide	ND	490	ND	160	
110-02-1	Thiophene	3,100	540	910	160	
513-44-0	Isobutyl Mercaptan	ND	580	ND	160	
352-93-2	Diethyl Sulfide	ND	580	ND	160	
109-79-5	n-Butyl Mercaptan	ND	580	ND	160	
624-92-0	Dimethyl Disulfide	ND	300	ND	78	
616-44-4	3-Methylthiophene	ND	630	ND	160	
110-01-0	Tetrahydrothiophene	ND	560	ND	160	
638-02-8	2,5-Dimethylthiophene	ND	720	ND	160	
872-55-9	2-Ethylthiophene	ND	720	ND	160	
110-81-6	Diethyl Disulfide	ND	390	ND	78	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS Page 1 of 1

Client: Weaver Boos Consultants

Client Sample ID:Method BlankALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P140905-MB

Test Code: ASTM D 5504-12

Instrument ID: Agilent 6890A/GC13/SCD

Analyst: Mike Conejo

Sample Type: 6.0 L Silonite Canister

Test Notes:

Date Collected: NA
Time Collected: NA
Date Received: NA
Date Analyzed: 9/05/14
Time Analyzed: 08:00

Volume(s) Analyzed: 1.0 ml(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	μg/m³	${f ppbV}$	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY CONTROL SAMPLE SUMMARY $\mbox{Page 1 of 1}$

Client: Weaver Boos Consultants

Client Sample ID:Lab Control SampleALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P140905-LCS

Test Code: ASTM D 5504-12 Date Collected: NA
Instrument ID: Agilent 6890A/GC13/SCD Date Received: NA
Analyst: Mike Conejo Date Analyzed: 9/05/14

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	${f ppbV}$		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,050	1,570	77	66-131	
463-58-1	Carbonyl Sulfide	2,020	1,560	77	64-131	
74-93-1	Methyl Mercaptan	1,890	1,600	85	68-160	

RESULTS OF ANALYSIS

Page 1 of 1

Client: Weaver Boos Consultants

Client Project ID: Cottonwood Hills RDF Flare Gas Sample

ALS Project ID: P1403572

Total Gaseous Nonmethane Organics (TGNMO) as Methane

Test Code: EPA Method 25C Modified

Instrument ID: HP5890 II/GC1/FID/TCA Date(s) Collected: 9/3/14
Analyst: Wade Henton Date Received: 9/4/14
Sampling Media: 6.0 L Silonite Canister(s) Date Analyzed: 9/6/14

Client Sample ID	ALS Sample ID	Canister Dilution Factor	Injection Volume ml(s)	Result ppmV	MRL ppmV	Data Qualifier
CWH-1	P1403572-001	3.05	0.50	3,200	3.1	
CWH-2	P1403572-002	2.85	0.50	4,400	2.9	
CWH-3	P1403572-003	3.12	0.50	4,500	3.1	
Method Blank	P140906-MB	1.00	0.50	ND	1.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE SUMMARY $\mbox{Page 1 of 1}$

Client: Weaver Boos Consultants

Client Sample ID:Lab Control SampleALS Project ID: P1403572Client Project ID:Cottonwood Hills RDF Flare Gas SampleALS Sample ID: P140906-LCS

Test Code: EPA Method 25C Modified Date Collected: NA
Instrument ID: HP5890 II/GC1/FID/TCA Date Received: NA
Analyst: Wade Henton Date Analyzed: 9/06/14

Sampling Media: 6.0 L Silonite Canister Volume(s) Analyzed: NA ml(s)

				ALS	
Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	ppmV	ppmV		Limits	Qualifier
Total Gaseous Nonmethane Organics (TGNMO) as Methane	199	190	95	81-119	_